Anisotropic Grid Adaptation for Navier-stokes’ Equations

نویسنده

  • LARS FERM
چکیده

Navier-Stokes’ equations are discretized in space by a finite volume method. Error equations are derived which are approximately satisfied by the errors in the solution. The dependence of the solution errors on the discretization errors is analyzed in certain flow cases. The grid is adapted based on the estimated discretization errors. The refinement and coarsening of the grid are anisotropic in the sense that it is different in different directions in the computational domain. The adaptation algorithm is applied to laminar, viscous flow over a flat plate, in a channel with a bump, and around a cylinder and an airfoil.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations

The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...

متن کامل

A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations

This paper presents a mesh adaptation method for higher-order (p > 1) discontinuous Galerkin (DG) discretizations of the two-dimensional, compressible Navier–Stokes equations. A key feature of this method is a cut-cell meshing technique, in which the triangles are not required to conform to the boundary. This approach permits anisotropic adaptation without the difficulty of constructing meshes ...

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

Optimal error bounds for two-grid schemes applied to the Navier-Stokes equations

We consider two-grid mixed-finite element schemes for the spatial discretization of the incompressible Navier-Stokes equations. A standard mixed-finite element method is applied over the coarse grid to approximate the nonlinear Navier-Stokes equations while a linear evolutionary problem is solved over the fine grid. The previously computed Galerkin approximation to the velocity is used to linea...

متن کامل

Parallel 3D Adaptive Compressible Navier-Stokes Solver in GeoFEM with Dynamic Load-Balancing by DRAMA Library

Grid adaptation is a very useful method for applications with unstructured meshes but requires dynamic load-balancing for efficient parallel computation. In this study, a parallel 3D compressible Navier-Stokes code with adaptive hybrid meshes (epHYBRID) and parallel adaptation procedure (pADAPT) have been developed on GeoFEM parallel platform. The DRAMA library has been integrated into the pADA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002